2002 SCHEME

Third Semester B.E. Degree Examination, June/July 2018 Electronics Circuits

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions.

2. Missing data may be suitably assumed.

a. For the sketch shown in fig.Q1(a) below V_i varies from 0 to 150V. Sketch the output voltage V_o to the same time scale as the input voltage. Assume diodes to be ideal.

(08 Marks)

Fig.Q1(a)

b. Explain the operation of full wave voltage doubler circuit.

(07 Marks)

- c. A full wave rectifier circuit is fed from a secondary center tapped transformer. The rms voltage from either end of secondary to center tap is 30V if diode resistance $R_s = 2\Omega$, half secondary resistance $R_s = 8\Omega$ and load $R_L = 1k\Omega$, calculate efficiency of rectification.
- 2 a. Draw and explain a double diode clipper circuit, which limits the output at two independent levels. (06 Marks)
 - b. Explain how a diode can be used in a transistor to compensate for changes in I_{CO}. (06 Marks)
 - c. For the circuit shown in the Fig.Q2(c) determine I_C , V_{CE} , R_1 , V_B .

(08 Marks)

- 3 a. Explain the working of single stage R-C coupled amplifier using BJT. (12 Marks)
 - b. A three stage amplifier has these power gains $G_1 = 10$, $G_2 = 100$ and $G_3 = 1000$. What is the total power gain? What is the Bel power gain of each stage? What is the bel power gain of the 3 stage amplifier? (08 Marks)
- 4 a. Draw the hybrid- π model of a transistor and explain the significance of each component in the model (06 Marks)
 - b. Derive expressions for transistor transconductance g_m and input conductance $g_{b'e}$

(10 Marks)

c. Explain the various types of distortions encountered in amplifiers.

(04 Marks)

- 5 a. What are power amplifiers and how do they differ from small signal voltage amplifier.

 (04 Marks)
 - b. Explain the working of a push-pull amplifier and derive expression for its efficiency.

(12 Marks)

c. Define class A and Class B type of amplification.

(04 Marks)

- 6 a. Derive an expression for the maximum conversion efficiency of a class B push pull amplifier. (10 Marks)
 - b. Calculate the input power, output power and efficiency of the amplifier in the fig.Q6(b) shown for an input voltage in a base current of 10mA peak. Also calculate the power dissipated by the transistor.

 (10 Marks)

Fig.Q6(b)

 γ a. Explain the working of a 3-bit DAC using R-2R ladder network.

(08 Marks)

b. What are the specifications of a DAC?

(04 Marks)

c. Sketch the output V_0 of the following comparator circuits. [Refer Fig. Q7(c)] (08 Marks)

5 Sinwt +15V 1) Vi 1) Vi 1-15V VR = 2V 8-15V

Fig. Q7(c)

8 a. Draw and explain the working of positive clamper.

(06 Marks)

b. Explain the working of D/A converter [Binary weighted resistors] with neat sketch.

(06 Marks)

c. Give the circuit schematic off 555 timer connected as an astable multivibrator. Describe its operation. (08 Marks)

* * * * *