

	 	 	_	 ,		
USN						15EC36

Third Semester B.E. Degree Examination, June/July 2018 Engineering Electromagnetics

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing one full question from each module.

Module-1

- a. Define electric field intensity and flux density and also establish the relationship between them.

 (04 Marks)
 - State and explain Coulomb's law of force between two print charges. (06 Marks)
 - c. Two uniform line charges of densities 4 nc/m and 6nc/m lying x = 0 plane at y = 5m and y = -6m respectively. Find electric field intensity at P(4, 0, 5)m. (06 Marks)

OR

- 2 a. Derive an expression for electric field intensity due to infinite line charge. (08 Marks)
 - A volume charge density $\rho_v = \frac{5k}{r}$, where $r \neq 0$, k = constant exists within a sphere of

radius $\frac{a}{2}$. Determine the magnitude of point charge placed at origin which will produce the

same electric field at $r = \frac{a}{2}$.

(08 Marks)

Module-2

3 a. Derive the Maxwell's first equation in electrostatics.

(04 Marks)

b. Derive the expression for continuity of current.

(06 Marks)

c. Find the total charge in a volume defined by six planes for which $1 \le x \le 2$; $2 \le y \le 3$; $3 \le z \le 4$. If $\vec{D} = \begin{bmatrix} 4x \, \hat{a}_x + 3y^2 \, \hat{a}_y + 2z^3 \, \hat{a}_z \end{bmatrix} c/m^2$. (06 Marks)

OR

4 a. Briefly explain Gauss's divergence theorem.

(06 Marks)

- b. Obtain an expression for the energy expanded in moving a point charge in an electric field.

 (06 Marks)
- c. Let $V = \frac{\cos 2\phi}{r}$ in free space in cylindrical system. Find \vec{E} at B(2, 30°, 1). (04 Marks)

Module-3

- 5 a. With the usual notations, deduce the Poisson's and Laplace's equation from the Maxwell's first equation. (06 Marks)
 - b. Determine whether or not the following vector represents a possible electric field. $\vec{E} = 5\cos z \,\hat{a}_x \, V/m$. (04 Marks)
 - c. Prove that the line integral of magnetic field intensity H around a closed path is exactly equal to current 'I' enclosed by that path. (06 Marks)

- Solve Laplace's equation to determine the capacitance of a coaxial cable when the inner radius is 'a' and outer radius is 'b' respectively.
 - b. State and explain 'stokes theorem'.

(04 Marks)

c. Given the vector magnetic potential $\vec{A} = x^2 \hat{a}_x + 2yz \hat{a}_y + (-x^2)\hat{a}_z$. Find magnetic flux density. (04 Marks)

Module-4

- Derive Lorentz force equation and mention the application of solution. (05 Marks)
 - A point charge Q = -1.2C has velocity $\vec{V} = (5\hat{a}_x + 2\hat{a}_y 3\hat{a}_z)$ m/s. Find the magnitude of force exerted on the charge if,

i)
$$\vec{E} = -18 \hat{a}_x + 5 \hat{a}_y - 10 \hat{a}_z$$
 V/m

ii)
$$\vec{B} = -4 \hat{a}_x + 4 \hat{a}_y + 3 \hat{a}_z$$
 T

Both are present simultaneously.

(06 Marks)

Briefly explain force between differential current elements. (05 Marks)

OR

- Discuss the magnetic boundary condition at the interface between two different magnetic materials. (05 Marks)
 - Briefly explain potential energy and forces on magnetic materials.

(05 Marks)

A rectangular loop of wire in free space joins A(1, 0, 1), B (3, 0, 1) to C(3, 0, 4) to D (1, 0, 4) to A. The wire carries a current of 6mA flowing in \hat{a}_z direction from B to C. A filamentary current of 15A flows along the entire z-axis in the \hat{a}_z direction as shown in Fig.Q.8(c). Find: i) Force on side BC ii) Force on side AB iii) Total force on loop.

(06 Marks)

Fig.Q.8(c)

Module-5

a. State and explain Faraday's law in point and integral form.

(06 Marks)

- b. Derive Ampere's circuit law in point form and integral form suitable for Time-varying (07 Marks)
- c. Find the angular frequency at which the conduction current and displacement current are equal in medium with $\sigma = 5.6 \times (0^{-6}) \text{ m}$ and $\epsilon_r = 40$. (03 Marks)

OR

10 a. State and prove Poynting theorem.

(06 Marks)

b. Briefly explain skin depth and skin effect.

(05 Marks)

- c. A 300MHz uniform plane wave propagation through fresh water for which $\sigma = 0$, $\mu_r = 1$ and $\in_{\rm r}$ = 78. Calculate:
 - i) Attenuation constant
 - Phase constant ii)
 - Wave length
 - Intrinsic impedance.

(05 Marks)