

|     |                | General Scheme                                                                                                                                                                                                                                                                                                                                                       |                                                         |
|-----|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| USN |                |                                                                                                                                                                                                                                                                                                                                                                      | 15EC33                                                  |
|     |                | Third Semester B.E. Degree Examination, June/July 201                                                                                                                                                                                                                                                                                                                | 8                                                       |
|     |                | Digital Electronics                                                                                                                                                                                                                                                                                                                                                  |                                                         |
| Tin | ne: 3          | hrs.  Note: Answer any FIVE full questions, choosing ONE full question from each module.                                                                                                                                                                                                                                                                             | Marks: 80                                               |
|     |                | Module-1                                                                                                                                                                                                                                                                                                                                                             |                                                         |
| 1   | a.<br>b.<br>c. | Given, $F = A(B + C) + D$ , obtain: i) minimal SOP ii) minimal POS iii) c iv) canonical POS. Realize a circuit for Ex-NOR using only four NOR gates. Simplify the function using K-map.: $Y = f(a,b,c,d) = \sum_{m} (0,1,2,3,5,6,8,10,15).$                                                                                                                          | anonical SOP<br>(08 Marks)<br>(02 Marks)                |
|     |                | Write the simplified SOP expression.                                                                                                                                                                                                                                                                                                                                 | (06 Marks)                                              |
| 2   | a.<br>b.       | Simplify the following function using Quine – McClusky method : $P = f(a, b, c, d) = \Sigma_m(0, 2, 3, 5, 8, 10, 11, 13)$ . Reduce the following Boolean function using K-map and realize the simplifiusing NOR gates. $T = f(a, b, c, d) = \Sigma_m(0, 2, 3, 5, 6, 7, 8, 9) + \Sigma_d(10, 11, 12, 13, 14, 15).$ Prove that, $ABC + ABC + ABC + ABC = AB + BC + CA$ | (06 Marks)<br>ed expression<br>(06 Marks)<br>(04 Marks) |
|     |                | Module-2                                                                                                                                                                                                                                                                                                                                                             | (01.11111111111111111111111111111111111                 |
| 3   | a.<br>b.       | Design a binary full subtractor using logic gates. Write a truth table Implementation circuit using basic gates.  Define magnitude comparator. Design a two bit binary comparator and imsuitable logic gates.                                                                                                                                                        | (06 Marks)                                              |
| 4   | a.<br>b.       | Implement full adder using 4: 1 multiplexer (MUX). With a neat logic diagram, explain carry look ahead adder.                                                                                                                                                                                                                                                        | (08 Marks)<br>(08 Marks)                                |
|     |                | Module-3                                                                                                                                                                                                                                                                                                                                                             |                                                         |
| 5   | a.<br>b.       | Obtain the characteristic equation for D and T flip-flop. Explain the working of a master—slave SR flip-flop with the help of a lefunction table, logic symbol and timing diagram. Differentiate sequential logic circuit and combinational logic circuit.                                                                                                           | (04 Marks) ogic diagram, (08 Marks) (04 Marks)          |
|     |                | OR                                                                                                                                                                                                                                                                                                                                                                   |                                                         |
| 6   | a.<br>b.<br>c. | Explain the working of master slave JK flip-flops with functional table and tir Show how race around condition is over come.  Discuss the difference between a flip-flop and latch.  Derive the characteristic equations of SR and JK flip-flops.                                                                                                                    | ming diagram.<br>(08 Marks)<br>(04 Marks)<br>(04 Marks) |

## Module-4

a. Design a synchronous mod-5 counter using JK flip-flops and implement it. (08 Marks)
b. Design synchronous mod-6 counter using D flip-flop to generate the count sequence, (0, 2, 3, 6, 5, 1, 0). (08 Marks)

## OR

- 8 a. Design divide by 6 synchronous counter using T flip-flops. Write state table and reduce the expression using K-map.

  (06 Marks)
  - b. Compare synchronous and asynchronous counters.

(04 Marks)

c. Design mod-6 ripple counter using T flip-flops.

(06 Marks)

(08 Marks)

## Module-5

- 9 a. Design a Moore type sequence detector to detect a serial input sequence of 101. (08 Marks) b. Design a synchronous counter using JK flip-flops to count the sequence 0, 1, 2, 4, 5, 6, 0,
  - 1, 2. Use state diagram and state table.

OR

- 10 a. Explain the Mealy model and Moore model of a clocked synchronous sequential network.

  (08 Marks)
  - b. Design a Mealy type sequence detector to detect a serial input sequence of 101. (08 Marks)

\* \* \* \* \*