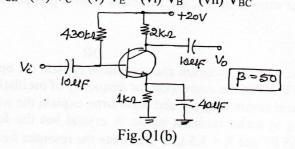


Third Semester B.E. Degree Examination, June/July 2018 **Analog Electronic Circuits**

Time: 3 hrs.


Max. Marks: 80

Note: Answer any FIVE full questions, choosing one full question from each module.

Module-1

- Derive an expression for E_{Th} , I_B and V_{CE} for voltage divider bias circuit using exact (08 Marks)
 - For the emitter bias network of Fig.Q1(b), determine the following parameters: b. (i) I_B (ii) I_C (iii) V_{CE} (iv) V_C (v) V_E (vi) V_B (vii) V_{BC}

(08 Marks)

OR

- Derive the expression for stability factor for fixed bias circuit with respect to I_{CO} , V_{BE} and β . (10 Marks)
 - With a neat circuit diagram explain the operation of self bias circuit,

(06 Marks)

(08 Marks)

Module-2

- With the help of re equivalent model, derive an equation for input impedance, output 3 impedance and voltage gain for an emitter follower configuration. (08 Marks)
 - For the collector feedback configuration having $R_{FO} = 180$ k Ω , $R_C = 2.7$ k Ω , $C_1 = 10$ μF , $C_2 = 10 \ \mu\text{F}, \ \beta = 200, \ r_0 = \infty \ \Omega$ and $V_{CC} = 9 \ \text{volts}$ determine the following parameters: (i) r_e (ii) Z_i (iii) Z_o (iv) A_V

a. High frequency response BJT Amplifier has the following parameters: $R_S = 1 \text{ k}\Omega$, $R_1 = 40 \text{ k}\Omega$, $R_2 = 10 \text{ k}\Omega$, $R_E = 2 \text{ k}\Omega$, $R_C = 4 \text{ k}\Omega$, $R_L = 2.2 \text{ k}\Omega$, $C_{wi} = 6 pF$, $C_{wo} = 8 pF$ (i) Determine f_{Hi} and f_{Ho} (ii) Determine f_{β} and f_{T}

b. Derive equations for Miller input capacitance and Miller output capacitance

(08 Marks)

(08 Marks)

Module-3

Derive expressions for Z_i and A_i for a Darlington emitter follower circuit. (10 Marks)

b. Explain the need of a cascading amplifier? Draw and explain the block diagram of two stage cascade amplifier. (06 Marks)

OR

6 a. List the general characteristics of negative feedback amplifiers. (04 Marks) b. Determine the voltage gain, input impedance and output impedance with feedback for voltage series feedback amplifier having A=-100, $R_i=10$ k Ω , $R_o=20$ k Ω for feedback of (i) $\beta=-0.1$ and (ii) $\beta=-0.5$) (06 Marks)

For a current series feedback amplifier, derive an expression for output impedance with feedback.

(06 Marks)

Module-4

7 a. With a neat circuit and waveforms, explain the operation of a transformer coupled class-A power amplifier. (08 Marks)

b. Show that maximum efficiency of class-B push pull power amplifier circuit is 78.54%.

(08 Marks)

OR

8 a. With a neat circuit diagram and waveform explain the operation of RC phase shift oscillator using BJT. Write the expression for frequency of oscillation. (08 Marks)

With a neat circuit diagram and waveform, explain the working principle of crystal oscillator operating in series resonant mode. A crystal has the following parameters: L=0.334 H, C=0.065 PF and R=5.5 k Ω . Calculate the resonant frequency.

Module-5

- a. Derive the expression for A_v, Z_i and Z_o for a JFET common source amplifier with fixed bias configuration. (08 Marks)
 - b. For a self bias JFET circuit, $V_{DD}=+12V$, $R_D=2.2~k\Omega$, $R_G=1~m\Omega$, $R_S=1~k\Omega$, $I_{DSS}=8mA$, $V_P=-4$ volts. Determine the following parameters: (i) V_{GS} (ii) I_D (iii) V_{DS} (iv) V_S (v) V_G (vi) V_D (08 Marks)

OR

- 10 a. Derive expression for V_{GS}, I_D, V_{DS}, V_D and V_S for a voltage divider bias circuit using FET. (08 Marks)
 - b. With neat sketches, explain the basic operation and characteristics of n-channel depletion type MOSFET. (08 Marks)