

14MAT21

Second Semester B.E. Degree Examination, June/July 2018 Engineering Mathematics – II

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, selecting ONE full question from each module.

Module - 1

1 a. Solve:
$$\frac{d^2y}{dt^2} + \frac{dy}{dt} + 13y = e^{3t} \cosh 2t + 2^t$$
. (06 Marks)

b. Solve
$$y'' - 4y' + 4y = 8\cos 2x$$
. (07 Marks)

c. Solve
$$y'' + 4y = x^2 + e^{-x}$$
 by the method of undetermined coefficients. (07 Marks)

OR

2 a. Solve:
$$(4D^4 - 8D^3 - 7D^2 + 11D + 6)y = 0$$
. (06 Marks)

5. Solve:
$$y'' + 4y' - 12y = e^{2x} - 3\sin 2x$$
. (07 Marks)

c. Solve by the method of variation of parameters
$$y'' + 2y' + 2y = e^{-x} \sec^3 x$$
. (07 Marks)

Module – 2

3 a. Solve:
$$\frac{dx}{dt} + 2y = -\sin t$$
, $\frac{dy}{dt} - 2x = \cos t$. (06 Marks)

b. Solve:
$$x^{14} \frac{d^3y}{dx^3} + 2x^3 \frac{d^2y}{dx^2} - x^2 \frac{dy}{dx} + xy = \sin(\log x)$$
. (07 Marks)

c. Solve:
$$xy\left(\frac{dy}{dx}\right)^2 - (x^2 + y^2)\frac{dy}{dx} + xy = 0$$
, using solvable for P. (07 Marks)

UR

4 a. Solve:
$$\frac{dy}{dx} + y = z + e^x$$
, $\frac{dz}{dx} + z = y + e^x$. (06 Marks)

b. Solve:
$$(3x+2)^2 y'' + 3(3x+2)y' - 36y = 8x^2 + 4x + 1$$
. (07 Marks)

c. Show that the equation,
$$xp^2 + px + py + 1 - y = 0$$
 is Clairaut's equation. Hence obtain the general and singular solution. (07 Marks)

Module - 3

5 a. Form the partial differential equation by eliminating the arbitrary function in
$$\phi(x+y+z, x^2+y^2+z^2)=0$$
 (06 Marks)

b. Derive one dimensional wave equation in the form,
$$\frac{\partial^2 u}{\partial t^2} = C^2 \frac{\partial^2 u}{\partial x^2}$$
. (07 Marks)

c. Evaluate:
$$\int_{0}^{1-x^2} \int_{0}^{1-x^2-y^2} xyzdzdydx$$
. (07 Marks)