First Semester B.E. Degree Examination, June/July 2018 **Engineering Mathematics - I**

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, selecting ONE full question from each module.

Module-1

- $y = a \cos(\log_e x) + b \sin(\log_e x),$ show $x^2y_2 + xy_1 + y = 0$ that and $x^{2}y_{n+2} + (2n+1)xy_{n+1} + (n^{2}+1)y_{n} = 0.$ (07 Marks)
 - Show that the curves $r = a(1 + \cos\theta)$ and $r = b(1 \cos\theta)$ cut each other orthogonally.
 - (06 Marks) Find the radius of curvature at the point (a, 0) on the curve $xy^2 = a^3 - x^3$. (07 Marks)

- Find the nth derivative of cosx cos 2x cos 3x.
 - Define curvature of a curve and derive an expression for the radius of curvature in the polar (97 Marks)
 - Find the pedal equation of the curve $\frac{2a}{r} = 1 + \cos\theta$. (07 Marks)

Module-2

- Obtain the Maclaurin's series for e^x cos x upto the term containing (06 Marks)
 - If w = f(x,y), $x = r\cos\theta$, $y = r\sin\theta$, show that $\left(\frac{\partial w}{\partial r}\right)^2 + \frac{1}{r^2} \left(\frac{\partial w}{\partial \theta}\right)^2 = \left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2$. (07 Marks)
 - Find the extreme values of the function $f(x,y) = x^3 + y^3 + 3x 12y + 20$. (07 Marks)

- Find the constants 'a' and 'b' such that $\lim_{x\to 0} \frac{x(1+a\cos x)-b\sin x}{x^3}$ may be equal to unity.
 - b. If $u = log_e \left(\frac{x^5 + y^5 + z^5}{x^2 + y^2 + z^2} \right)$, then show that by using Euler's theorem $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = 3$.
 - (06 Marks) If $x = r \sin \theta \cos \phi$, $y = r \sin \theta \sin \phi$, $z = r \cos \theta$, then find the value of $\frac{\partial(x, y, z)}{\partial(r, \theta, \phi)}$. (07 Marks)

- Module-3

 Prove that the surfaces $4x^2y + z^3 = 4$ and $5x^2 2yz = 9x$ intersect orthogonally at the point (1, -1, 2). (07 Marks)
 - b. Show that $Div(curl \vec{A}) = \vec{0}$. (06 Marks)
 - Use general rules to trace the curve $y^2(a-x) = x^3$, a > 0. (07 Marks)

OR

- 6 a. A vector field is given by $\vec{f} = (x^2 + xy^2)i + (y^2 + x^2)j$. Show that the field is irrotational and find the scalar potential. (07 Marks)
 - b. If $\vec{r} = xi + yj + zk$, show that i) div $\vec{r} = 3$ (06 Marks)
 - c. Evaluate $\int_{0}^{\infty} \left(\frac{e^{-\alpha x} \sin x}{x} \right) dx$ and hence show that $\int_{0}^{\infty} \left(\frac{\sin x}{x} \right) dx = \frac{\pi}{2}$, by using differentiation under integral sign. (07 Marks)

Module-4

- 7 a. Obtain the reduction formula for $\int \sin^m x \cos^n x dx$, where m and n are positive integers.
 - b. Solve: $xy(1+xy^2)\frac{dy}{dx} = 1$. (07 Marks)
 - c. Find the orthogonal trajectories of a system of confocal and coaxial parabolas $y^2 = 4a(x+a)$. (07 Marks)

OR

- 8 a. Solve: $(xy^3 + y)dx + 2(x^2y^2 + x + y^4)dy = 0$. (07 Marks)
 - b. Evaluate $\int_{0}^{a} \frac{x^{7}}{\sqrt{a^{2}-x^{2}}} dx$, using reduction formulae. (06 Marks)
 - c. Water at temperature 100°C cools in 10 minutes to 88°C in a room of temperature 25°C. Find the temperature of water after 20 minutes. (07 Marks)

Module-5

9 a. Reduce the following matrix to Echelon form and hence find the Rank,

$$\begin{bmatrix} 0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0 \end{bmatrix}$$
 (06 Marks)

- b. Solve by LU decomposition method x+2y+3z=14, 2x+3y+4z=20, 3x+4y+z=14. (07 Marks)
- c. Determine the largest eigen-value and the corresponding eigen vector of $A = \begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$

with the initial eigen vector be [1, 1, 0] using Rayleigh's power method. Perform six iterations. (07 Marks)

OR

- 10 a. Solve 3x + 8y + 29z = 71, 83x + 11y 4z = 95, 7x + 52y + 13z = 104 by using Gauss-Seidel method. Carryout 3 iterations. (06 Marks)
 - b. Reduce the matrix $\begin{bmatrix} 4 & 0 & 1 \\ -1 & -6 & -2 \\ 5 & 0 & 0 \end{bmatrix}$ to the diagonal form. (07 Marks)
 - c. Reduce the quadratic form $x^2 + 5y^2 + z^2 + 6xz + 2xy + 2yz$ to the canonical form and specify the matrix of transformation. (07 Marks)