

15MAT21

Second Semester B.E. Degree Examination, June/July 2018 **Engineering Mathematics - II**

Time: 3 hrs.

Max. Marks: 80

Note: 1. Answer any FIVE full questions, choosing one full question from each module.

1 a. Solve:
$$\frac{d^3y}{dx^3} - 3\frac{d^2y}{dx^2} + 3\frac{dy}{dx} - y = 0$$
 (05 Marks)

b. Solve:
$$\frac{d^2y}{dx^2} + \frac{dy}{dx} + y = (1 - e^x)^2$$
 (05 Marks)

c. Solve
$$\frac{d^2y}{dx^2} + y = \sec x \cdot \tan x$$
 by the method of variation of parameters. (06 Marks)

2 a. Solve
$$\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = x^2$$
, using inverse differential operator method. (65 Marks)

b. Solve
$$\frac{d^2y}{dx^2} - 4y = x \cdot \sin 2x$$
, using inverse differential operator method. (05 Marks)

$$\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = e^{3x} + \sin x \tag{06 Marks}$$

3 a. Solve:
$$x^2 \frac{d^2y}{dx^2} + 3x \frac{dy}{dx} + y = \frac{1}{(1-x)^2}$$
 (05 Marks)

b. Solve:
$$p^2 + p(x + y) + xy = 0$$

c. Solve: $x - yp = ap^2$ by solving for x (06 Marks)

c. Solve:
$$x - yp = ap^2$$
 by solving for x (06 Marks)

4 a. Solve:
$$(3x+2)^2 \frac{d^2y}{dx^2} + 5(3x+2)\frac{dy}{dx} - 3y = x^2 + x + 1$$
 (06 Marks)

b. Solve:
$$p^2 + 2py \cot x - y^2$$
 by solving for p. (05 Marks)

Module-3

5 a. Form a partial differential equation by eliminating arbitrary constants
$$(x-a)^2 + (y-b)^2 = z^2 \cot^2 \alpha , \text{ where '} \alpha' \text{ is the parameter.}$$
 (06 Marks)

b. Solve
$$\frac{\partial^2 z}{\partial x \partial y} = \sin x \cdot \sin y$$
 for which $\frac{\partial z}{\partial y} = -2\sin y$, when $x = 0$ and $z = 0$ when y is an odd multiple of $\pi/2$.

15MAT21

c. Derive the one-dimensional wave equation in the form $\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial \mathbf{v}^2}$. (05 Marks)

- Form a partial differential equation by eliminating the arbitrary function from (06 Marks)
 - b. Solve $\frac{\partial^2 z}{\partial x^2} + 3\frac{\partial z}{\partial x} 4z = 0$ subject to the conditions that z = 1 and $\frac{\partial z}{\partial x} = y$ when x = 0. (06 Marks)
 - Derive the one dimensional heat equation in the form $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$. (04 Marks)

Module-4

- a. Evaluate $\int_{0}^{2} \int_{0}^{4} (xy + e^{x}) dy dx$ (05 Marks)
 - b. Evaluate $\int_{V}^{\infty} \frac{e^{-y}}{v} dxdy$ by changing the order of integration. (05 Marks)
 - c. Obtain the relation between beta and gamma function in the form $\beta(m,n) = \frac{\lceil m \cdot \rceil n}{\lceil m+n \rceil}$ (06 Marks)

- a. Evaluate $\int_{0}^{2a} \int_{0}^{\sqrt{2ax-x^2}} x^2 dy dx$ by changing to polar coordinate. (05 Marks)
 - b. Evaluate $\int_{-1}^{1} \int_{0}^{Z} \int_{x-z}^{x+y} (x+y+z) dy dx dz$ (05 Marks)
 - Evaluate $\int_{0}^{\pi/2} \sqrt{\tan \theta} \cdot d\theta$ (06 Marks)

- Evaluate (i) L $\{t^3 + 4t^2 3t + 5\}$ (ii) L $\{\cos t \cos 2t \cdot \cos 3t\}$ Find the Laplace transform of L $\{e^{3t} \cdot \sin 5t \cdot \sin 3t\}$ (06 Marks)
 - (05 Marks)
 - Solve the equation $\frac{d^2y}{dt^2} + 3\frac{dy}{dt} + 2y = 0$ under the conditions y(0) = 1, y'(0) = 0. (05 Marks)

OR

- a. Evaluate: $L^{-1} \left\{ \frac{4s+5}{(s+1)^2(s+2)} \right\}$ (06 Marks)
 - Find $L^{-1}\left\{\frac{1}{(s+1)(s^2+1)}\right\}$ by using convolution theorem. (05 Marks)
 - Express the function in terms of unit step function and hence find their Laplace transform

$$\begin{cases}
 1, & 0 \le t \le 1 \\
 t, & 0 < t \le 2 \\
 t^2, & t > 2
 \end{cases}$$
(05 Marks)