	1/_	_(6)
USN		10CS46

Fourth Semester B.E. Degree Examination, Dec.2017/Jan.2018 **Computer Organization**

Time: 3 hrs.

Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

With a neat block diagram, explain the different functional units of a digital computer.

(06 Marks)

- Explain how byte addressability can be achieved using little endian and big endian memory representation. Write an example for each.
- c. Perform the following operations on the 5-bit signed numbers using 2's complement representation system. Also indicate whether overflow has occurred or not.
 - (-10) + (-13)
 - ii) (-10) (+4)
 - iii) (-3) + (-8)
 - iv) (-10) -(+7).

(08 Marks)

- Define Addressing Mode, explain the following addressing modes with an example and also 2 show the effective address in each case?
 - i) Absolute
 - ii) Indirect
 - iii) Index

(10 Marks)

- b. Illustrate and explain with neat diagrams and examples, how logical shift and rotate instructions are implemented? (10 Marks)
- What do you mean by interrupt? Explain polling and vectored interrupts. (06 Marks)
 - Define bus arbitration. Explain the centralized arbitration with a neat diagram. (06 Marks) What is DMA? Explain how the DMA controllers are used in a computer system. (08 Marks)
- Explain the following with respect to USB:
 - i) Characteristics
 - ii) Architecture
 - iii) Addressing.

(10 Marks)

Discuss the main phases involved in the operation of SCSI bus.

(08 Marks)

Differentiate between serial port and parallel port.

(02 Marks)

PART - B

- With the help of a neat block diagram, explain the working of a 1K × 1 memory cell 5 organization. (10 Marks)
 - Explain the memory hierarchy with respect to speed, size and cost with a neat diagram. (05 Marks)
 - With a block diagram, explain the working principle of direct mapping cache memory.

(05 Marks)

6 a. Discuss with a neat diagram, the design of a 4-bit carry-look ahead adder.
b. Perform multiplication for +13 and -6 using Booth's Algorithm.
c. With a neat figure, explain the circuit arrangement for binary division.

(05 Marks)

7 a. List out the actions needed to execute the instruction Add (R₃), R₁. Write and explain sequence of control steps for execution of the same. (10 Marks)

b. With a neat block diagram, explain hardwired control unit. Show the generation Z_{in} and End control signals. (10 Marks)

8 a. With a neat diagram, explain the organization of a shared memory multi processor.

(08 Marks)

b. What is hardware multithreading? Explain the two approaches to hardware multithreading.

(08 Marks) (04 Marks)

c. Discuss: i) SISD ii) SIMD iii) MIMD iv) MISD.

2 of 2