2002	SCHEME
------	--------

		THE THE PARTY AND THE PARTY AN	
USN			CS33

Third Semester B.E. Degree Examination, Dec.2017/Jan.2018 Logic Design

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions.

- a. Define Boolean algebra, State and prove absorption law.
 b. Describe the Shannon's reduction theorem. Simplify the following expression using Shannon's reduction theorem.
 - f(w, x, y, z) = x + wx(y + wx) + xy + wz.

(06 Marks)

- c. Perform the following operations on the Boolean expression
 - xy + wx(y + wx) + wxz

i) Expand into the from $(x + g_1(w, y, z))(\bar{x} + g_2(x, y, z))$

ii) Convert into the minterm canonical form.

(08 Marks)

- 2 a. Simplify the following Boolean functions, using algebraic manipulation
 - i) $f(x,y,z) = \overline{x} \overline{y} \overline{z} + x y + xyz$
 - ii) $f(w, x, y, z) = \overline{w} y z + wz + y z + xyz$

(08 Marks)

- b. Realize the following function, using (no simplification)
 - i) NAND gates only
 - ii) NOR gates only

 $f(x, y, z) = x\overline{z} + x\overline{y}z + \overline{x} + y$

(08 Marks)

- c. Show the steps in the graphical procedure for the realization of Boolean function, using NAND gates only. (04 Marks)
- 3 a. Define the prime implicate and the irredundant conjunctive normal form. (04 Marks)
 - b. Using K-map obtain the minimal sum of products for the following Boolean function show the essential prime implicates on the map

 $f(w, x, y, z) = \sum m(0, 2, 6, 7, 8, 10, 12) + dc (3, 15).$

(08 Marks)

c. Draw the K-map and simplify the following expression using z as the map entered variable and x and y as map variables.

 $f(x,y,z) = \overline{xy} + \overline{x} y \overline{z} + x \overline{y} z$.

(08 Marks)

- 4 a. Explain the operation of a two input TTL NAND-gate with totem-pole with a neat circuit diagram. (08 Marks)
 - b. Discuss how a resistor can be constructed using MOSFET.

(06 Marks)

- c. With the help of a circuit diagram, explain the operation of a two input NMOS nor gate.

 (06 Marks)
- 5 a. Explain a 4-bit parallel adder with carry lookhead scheme.

(10 Marks)

b. Explain how the binary number A and B can be compared using a 1-bit comparator network.

(10 Marks)

6 a. A combinational network is defined by the following three Boolean functions:

$$f_1(x, y, z) = \overline{x} \overline{y} + x y \overline{z}$$

$$f_2(x, y, z) = \overline{x} + y$$

$$f_3(x, y, z) = xy + xy$$

Design the network using a decoder and external gates.

(06 Marks)

b. Implement the following Boolean function using a 8-to-1 multiplexer:

$$f(A, B, C, D) = \sum m(0, 1, 3, 4, 8, 9, 15)$$

(06 Marks)

- c. Explain the different types of flipflops along with their truth table. Also explain the race-around condition in a flipflop.

 (08 Marks)
- 7 a. Design a synchronous Mod-6 counter, using clocked JK flip-flops. (10 Marks)
 - b. Obtain a minimal state table for a clocked synchronous sequential network having a single input line x, in which the symbols 0 and 1 are applied and a single output line z. An output of 1 is to be produced coincident with each third multiple of the input symbol 1. At all other times, the network is to produce 0 outputs. An example of input/output sequences that satisfy the conditions of the network specifications is

(10 Marks)

- Write explanatory notes on:
 - a. Algorithm for generating prime implicants using Quine-McCluskey method.
 - b. High speed addition using Carry look ahead adders.
 - c. Serial-in, serial-out & parallel-in, serial-out Shift registers.
 - d. Binary ripple counter.

(20 Marks)