15CV741

Seventh Semester B.E. Degree Examination, Dec.2018/Jan.2019 **Design of Bridges**

Time: 3 hrs.

Max. Marks: 80

Note: 1. Answer any FIVE full questions, choosing
ONE full question from each module.
2. Use of IS-456, IRC-5, IRC-6, IRC-21, IS1343, pigeaud's curves and relevant charts allowed.

Module-1

1 a. How are the bridges classified, briefly explain.

(10 Marks)

b. List the various loads to be considered in the design of bridges.

(06 Marks)

OR

2 Briefly explain the following terms:

- i) Linear waterway
- ii) Economic span
- iii) Afflux
- iv) Scour Depth.

(16 Marks)

Module-2

3 Design a deck slab for the following details:

Carriage way

= Two lane (7.5 m wide)

Foot paths

= 1 m on either side

Clear span

= 6m= 80mm

Wearing coat

Width of bearing = 400mm

Materials: M25 grade concrete and Fe415 grade HYSD bars Loading: IRC class AA tracked vehicle.

(16 Marks)

OR

4 Design a SKEW slab culvert to suit the following data:

Clear span

=6m

Width of bearing

=370mm

Width of carriage way
Overall depth of slab

= 7.5 m

Wearing coat

= 540mm = 80mm

Skew angle

= 30°

Loading: IRC class AA tracked vehicle

Materials: M20 grade concrete and Fe415 HYSD bars.

(16 Marks)

Module-3

Design the 'Deck slab only' for the T-beam bridge for the following data:

Effective span = 16m; Live Load – IRC class AA tracked; Materials – M25 grade concrete and Fe415 steel; spacing of the cross girders 4m c/c; width of carriage way = 7.5m; thickness of wearing coat = 80mm; Kerbs on either side = 600mm wide × 300mm deep; width of main girder = 300mm; width of cross girder = 300mm; spacing of main girders = 2.5m c/c; sketch reinforcement details.

(16 Marks)

1 of 2

2. Any revealing of identification, appeal to evaluator and lor equations written eg, 42+8=50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

OR

Design T-beam bridge "cross girder" for the data given in Q5 and sketch the reinforcement details.

Module-4

Design a Reinforced concrete box culvert having a clear vent way 3m by 3m. The super imposed dead load on the culvert is 12.8 kN/m². The Live Load is estimated as 50 kN/m². Density of soil at site is 18 kN/m². Angle of repose = 30°. Adopt M20 grade concrete and Fe415 steel. Sketch the details of reinforcement. (16 Marks)

OR

8 Design a suitable reinforced concrete pipe culvert to suit following data:

Discharge through pipe culvert Velocity of flow through pipe = 2m/s

Width of road = 7.5m

Top width of embankment = 1.5:1

Bed level of stream = 100.00 m

Top of embankment = 103.00 m

Loading: IRC class AA Wheeled vehicle.

icle. (16 Marks)

Module-5

9 Verify the stability of the abutment shown in Fig.Q.9. The other salient details are given below:

Material = Concrete

Density of soil = 18 kN/m^3 Coefficient of friction

Angle of repose of soil = $\phi = 30^\circ$ Live Load on bridge = IRC class AA tracked

Span of bridge = 15 mAngle of friction between the soil and concrete $= 18^{\circ}$

The bridge deck consists of three longitudinal girders of 1.4m depth with a deck slab of 200mm depth.

(16 Marks)

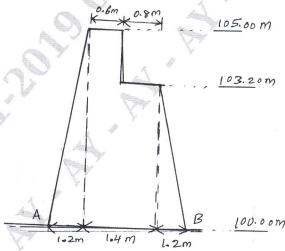


Fig.O.9

- Write short notes on:
 - a. Bridge bearings
 - b. Hinges
 - c. Expansion Joints

(16 Marks)

OR