Seventh Semester B.E. Degree Examination, Dec.2018/Jan.2019 Design of RCC and Steel Structures

Time: 3 hrs.

Max. Marks: 80

Note: 1. Answer any TWO full questions, choosing one full question from each module. 2. Use of IS-456, IS-800 SP (6) and Steel tables are permitted.

Module-1

Design a slabtype rectangular combined footing for two columns of size $300 \text{mm} \times 450 \text{mm}$ and $300 \text{mm} \times 600 \text{mm}$, subjected to axial loads of 650 kN and 900 kN respectively. The columns are spaced at 3.6 m c/c. The width of the footing is restricted to 1.8 m. Use M20 grade concrete and Fe415 grade steel. Assume SBC of soil = 160 kN/m^2 . (40 Marks)

OR

Design a Cantilever retaining wall to retain an earth embankment with a horizontal top 3.50 m above ground level. The unit weight of back fill is 18 kN/m^3 . Angle of internal friction $\phi = 30^\circ$. SBC of soil = 180 kN/m^2 . Take coefficient of friction between soil and concrete = 0.55. Adopt M20 grade concrete and Fe415 grade steel. Depth of foundation = 1.0 m. (40 Marks)

Module-2

Design a roof truss shown in Fig. Q3 with forces in each member of the truss are given in table Q3. The size of RC column supporting the truss is 300mm × 300mm. Use M20 grade concrete for column. Design the truss using bolt of M16, property class 4.6 for connections and also design anchor bolts.

(40 Marks)

Fig. Q3

-8. (-		
Member	Design force in kN	
4	Compression	Tension
Top chord member	54.25	-
Bottom chord member	•	48.31
Diagonal member (DF, DE)	14.35	-
Member BE, HF	-	24.50
Member CE, GF	12.40	-

OR

- Design a simply supported crane gantry girder for the following data: The crane is 4 electrically operated. Yield stress of steel is 250 N/mm².
 - Span of Crane girder = 20 m (i)
 - Effective span of gantry girder = 7.4 m (ii)
 - Capacity of crane = 220 kN. (iii)
 - Self weight of Crane girder excluding crab = 200 kN. (iv)
 - Weight of Crab = 60 kN. (v)
 - (vi)
 - Wheel base distance = 3.4 m Minimum hook approach = 1.2 m. (vii)
 - Self weight of rail = 300 N/m (viii)
 - Height of rail = 75 mm (ix)

Gantry girder is to be supported on RCC column bracket of size 300mm × 450mm . Size of (40 Marks) column 300mm $\times 600$ mm.