Time: 3 hrs.

Max. Marks: 80

Note: 1. Answer any FIVE full questions, choosing one full question from each module.

2. Assume any missing data, if any.

Module-1

a. Determine the degree of static indeterminacy for the following structures [Fig.Q.1(a)].

(08 Marks)

B

(iii)

E (ii)

C Market C Ma

Fig.Q1(a)

b. Determine the forces in all the members of a truss shown in the Fig.Q.1(b) by method of joints and tabulate the results.

(08 Marks)

OR

2 a. Differentiate between statically determinate and indeterminate structures.

(06 Marks)

b. State the assumptions made in the analysis of truss

(02 Marks)

c. A truss of span 9m is loaded as shown in Fig. Q2(c). Find the forces in the members marked 1, 2 and 3. (08 Marks)

Fig.Q.2(c)

1 of 3

Module-2

- a. Determine the slope at supports and maximum deflection of a simply supported beam subjected to UDL throughout the span 'L'. Use Double integration Method. (08 Marks)
 - b. A cantilever of length 2m carries a point load of 20kN at the free end and another load of 20kN at its centre. If E = 10⁵N/mm² and I = 10⁸ mm⁴ for the cantilever, then determine by moment-area method, the slope and deflection at the free end. Refer Fig.Q.3(b). (08 Marks)

OR

4 a. Compute the deflection under concentrated load for the beam shown in Fig.Q.4(a) by using Macaulay's method (08 Marks)

b. A cantilever beam AB of length 2m is carrying a point load 10kN at 'B'. The moment of inertia for the right half of the cantilever is 10⁸mm⁴ where as that for the left half is 2 × 10⁸ mm⁴. If E = 2 × 10⁸ kN/m², find the slope and deflection at the free end of the cantilever Refer Fig.Q.4(b). Use Conjugate Beam Method.

(08 Marks)

Module-3

- 5 a. Derive the expression for the strain energy stored in a beam due to flexure. (06 Marks)
 - b. Determine the vertical deflection at 'C' in the frame shown in Fig.Q.5(b). Take $E = 200 \times 10^6 \text{ kN/m}^2$ and $I = 3 \times 10^7 \text{ mm}^4$. Use Strain Energy method. (10 Marks)

OR

6 a. Find the central deflection of a simply supported beam carrying a point load at mid span shown in Fig.Q.6(a) by using Unit Load method. (06 Marks)

b. The cross-sectional area of the members is as indicated in Fig.Q.6(b). Using Strain – Energy method, find the strain energy stored due to loading. Take E = 200 kN/m². (10 Marks)

Fig.Q.6(b)

Module-4

- a. A three hinged parabolic arch hinged at the springing and crown points has a span of 40m and central rise of 8m. It carries a UDL of 20kN/m over the left half of the span together with a concentrated load of 100kN at the right quarter span point. (Centre of right span). Find the reactions at the supports, normal thrust and radial shear at a section 10m from left support.

 (08 Marks)
 - b. A cable of span 20m and dip 4m carries a UDL of 20kN/m over the whole span. Find:
 i) Maximum tension in the cable; ii) Minimum tension in the cable; iii) The length of the cable.

 (08 Marks)

OR

- 8 a. A three hinged parabolic arch of span 20m and central rise of 5m carries a point load of 200kN at 6m from left hand support as shown in Fig.Q.8(a).
 - Find the reaction at the supports A and B.
 - Draw the bending moment diagram for the arch and indicate the position of maximum bending moment. (10 Marks)

b A cable, supported on piers 80m apart at the same level, has a central dip of 8m. Calculate the maximum tension in the cable, when it is subjected to UDL of 30kN/m throughout the length. Also determine the vertical force on the piers, if the back stay is inclined at 60° to the vertical and cable passes over a pulley.

(06 Marks)

Module-5

9 a. Define a Influence line diagram. What are the uses of ILD?

(06 Marks)

b. Determine the reaction R_A by using ILD (influence line diagram) for beam loaded as shown in Fig.Q.9(b). (10 Marks)

OF

- 10 a. Draw the influence line diagram for shear force at a section for a simply supported beam subjected to single point load. (06 Marks)
 - b. Draw the ILD for shear force and bending moment for a section 5m from left end of a simply supported beam 20m long. Hence calculate the maximum SF and maximum BM at the section due to an UDL of length 8m and intensity 10kN/m. (10 Marks)