Fifth Semester B.E. Degree Examination, Dec.2018/Jan.2019 Transportation Engineering (Roads and Railways)

Time: 3 hrs.

Max. Marks:100

Note: 1. Answer any FIVE full questions, selecting at least TWO questions from each part.

2. Write suitable sketches wherever necessary.

3. Use of IRC – 37 and IRC – 58 design charts are permitted.

PART - A

1 a. Explain the characteristics of road transport.

(08 Marks)

- b. What are the different modes of transportation? Bring out the comparison between each mode. (06 Marks)
- c. What are the recommendation of Jayakar Committee? Explain the implementations of these recommendations. (06 Marks)
- 2 a. Explain briefly various types of classification of roads.

(08 Marks)

b. Define Saturation system and Master plan.

(04 Marks)

c. 3 new roads A, B and C are to be completed in a district during a five year plan period. Work out the order of priority for phasing a plan programme by maximum utility principle. Adopt utility of 1.0 for serving a village with population range of 2000 to 5000, for catering of 1000t of agricultural product / 100t of industrial products.

Road	Length	No. of village served population Productivity in 1000 tone			n 1000 tones	
	km	< 2000	2000 -5000	> 5000	Agr.	Ind.
A	15	10	8	3	15	1.2
В	12	16	3	1	11	0.0
C	18	20	10	2	20	0.8

(08 Marks)

- 3 a. List out the factors affecting the geometric design of a road. Explain any two in detail.
 - (10 Marks)
 - b. List out and briefly explain the engineering surveys to be conducted for a new alignment.

(06 Marks)

- c. Design the rate of superelevation for a horizontal highway curve of radius 500m and speed 100kmph. (04 Marks)
- a. Design the pavement slab thickness by IRC method using following data: Modulus of subgrade reaction = 8 kg/cm^3 ; Present traffic intensity = 1000 cvpd Design wheel load, P = 5100 kg, Radius of contact area = 15 cm, $\alpha = 10 \times 10^{-6} \text{/°C}$, $\gamma = 7.5\%$. Assume South Tamilnadu. (10 Marks)
 - b. Calculate the stresses at interior, edge and corner regions of a cement concrete pavement using Westerguard's stress equations. Use the following data: Wheel load, P = 5100 kg, $E = 3 \times 10^5 \text{ kg/cm}^2$, Pav thickness, h = 18 cm, $\mu = 0.15$, $k = 6 \text{ kg/cm}^3$, Radius of contact area, a = 15 cm.

(04 Marks) (04 Marks)

PART - B

5	a.	With a neat sketch, explain the permanent way. Also list out the requirements of an ideal				
		permanent way.	(10 Marks)			
	b.	Explain briefly the track stresses in rails, sleepers and Ballasts.	(10 Marks)			
6	a.	Mention the requirements of a good ballast.	(08 Marks)			
	b.	Mention the functions of sleepers.	(08 Marks)			
	c.	Define hauling capacity of a locomotive and mention the factors controlling it.	(04 Marks)			
7	a.	Calculate the maximum permissible speed on a curve of high speed B.G. track ha	ving:			
		i) Degree of the curve = 1°	8			
		ii) Amount of supereleration = 8 cm				
		iii) Length of transition curve = 130 m				
			(10 M			
	L		(10 Marks)			
	b.	Explain briefly about the various gradients used on railway tracks.	(10 Marks)			
8	a.	Draw a neat sketch of a left hand turnout and show various parts on it.	(06 Marks)			
	b.	Draw a neat sketch of a semaphore type signal and show its various parts.	(06 Marks)			
	C.	Write short notes on:	(

* * * *