CBCS S	cheme
--------	-------

	11_	(90)
USN		15BT44
	/ /	

Fourth Semester B.E. Degree Examination, Dec.2017/Jan.2018 Bioprocess Principles and Calculation

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing one full question from each module.

Module-1

- 1 a. Define the following:
 - i) Normality
 - ii) Molarity
 - iii) Molality

(06 Marks)

- b. Nitric acid and water form maximum boiling azeotrope containing 65% (mole) water. Find the composition of azeotrope by weight percent. (03 Marks)
- c. The analysis of the gas sample is given below (volume basis) $CH_4 = 66\%$, $CO_2 = 30\%$, $NH_3 = 4\%$. Calculate
 - i) The average molecular weight of the gas
 - ii) The density of the gas at 2 atm and 303K.

(07 Marks)

OR

- 2 a. Write the block diagram and material balance for the following unit operations:
 - i) Extraction
- ii) Drying
- iii) Mixing
- iv) Absorption.

(08 Marks)

b. A solution containing 55% benzene, 28% toluene and 17% xylene by weight is in contact with its vapour pressure at 373K. Calculate the total pressure and molar composition of the liquid and vapour.

(08 Marks)

Vapour pressure of C₆H₆ at 373 K

= 1.762 atm

Vapour pressure of C₆H₅CH₃ 373 K

= 0.76 atm

Vapour pressure of C_6H_4 (CH_3)₂ 373 K

= 0.276 atm

Module-2

- a. A distillation column separates 20% C₆H₆, 50% toluene, 30% xylene into 95% C₆H₆, 4% toluene and 1% xylene and the waste product containing 2% C₆H₆. Calculate the quantities of distillate and residue if 1000kg mol/h of fuel is fed. (08 Marks)
 - b. For carrying out nitration reaction, it is desired to have mixed acid containing 40% HNO₃, 42% H₂SO₄ and 18% H₂O by weight, Nitric acid of 69.5% weight is readily available. Calculate
 - i) Required strength of sulfuric acid to obtain the above mixed acid
 - ii) The weight ratio of nitric acid to sulfuric acid to be mixed.

(08 Marks)

OR

4 a. Define ultimate and proximate analysis of fuel. Explain.

- (04 Marks)
- b. What are biofuels? List out the sources of biofuel and their characteristics.
- (04 Marks)
- c. A coke contains 85% carbon and 15% non combustible material by weight.
 - i) The amount of oxygen theoretically required to burn 120kg of coke completely.
 - ii) The composition of gas in the product stream if 60% excess air is supplied. (08 Marks)

Module-3

- 5 a. Define the following:
 - i) Limiting reactant ii) Excess reactant iii) Percentage conversion.

(06 Marks)

b. Moist hydrogen containing 4 mole% H₂O is burnt completely in a furnace with 30% excess air. Calculate the orsat analysis of flue gas. (10 Marks)

OR

6 a. A limestone analysis is shown below

 $CaCO_3 = 92.89\%$ $M_gCO_3 = 5.41\%$

Insoluble = 1.70% (All by percentage by wt)

- i) How many kilograms of CaO can be made from 6 tonns of this limestone?
- ii) How many kilograms of CO₂ can be converted per kg of limestone?
- iii) How many kilograms of limestone are needed to make 2 tonns of lime? (10 Marks)
- b. A fuel oil is burnt in a furnace. The orsat analysis of flue gas found to contain.

 $CO_2 = 11.2\%$, $O_2 = 5.8\%$, $N_2 = 83.0\%$

All percentage are by mole. Calculate the C:H ratio of fuel oil. Assume that fuel does not contain nitrogen. (06 Marks)

Module-4

- 7 a. Define the following:
 - i) Heat capacity ii) Heat of formation (2) iii) Heat of reaction.

(06 Marks)

b. A natural gas has the following composition on mole basis.

 $CH_4 = 83\%$ $C_2H_6 = 15\%$ $N_2 = 2\%$

Calculate the heat to be added to heat 20kg mol of natural gas from 300k to 520k using the heat capacity data given below:

 $C_p = a + 6T + CT^2$, KJ/Kg mol K

(10 Marks)

р	,	-011-8 11101 11
Component	<u>a</u>	$b \times 10^3$ $c \times 10^6$
$CH_4(g)$	19.26	52.12 (11.98
$C_2H_6(g)$	5.41	178.09 - 67.38
$N_2(g)$	29.60	-5.15 13.19

OR

- 8 a. Define the following:
 - i) Calorific valve ii) Heat of solution iii) Heat of vaporization iv) Hess's law (08 Marks)
 - b. The heat capacity of air is given by

 $C_p = a + 6T + CT^2$, cal/mol.K

Where a = 6.39 $b = 1.76 \times 10^{-3}$ and $c = -0.27 \times 10^{-6}$. Calculate the mean molal heat capacity in the range 298 K to 530 K. What is the quantity of heat required for 20 kg mol of air to heat from 298K to 530K?

Module-5

9 a. Write a note on historical development of bioprocess.

(08 Marks)

b. With neat sketch explain the production of pencil.

(08 Marks)

OR

- 10 a. With neat sketch explain the production of enthanol and discuss all unit operations involved.

 (10 Marks)
 - b. Define: i) Overall growth yield ii) Respiratory quotient.

(06 Marks)